CREATING ARTIFICIAL INTELLIGENCE

Cidanjali Venkatiaman

INTRODUCTION

WE ARE ALREADY AWARE THAT COMPUTERS TODAY ARE SMART, HELPFUL AND ABLE TO COME UP WITH ANSWERS TO A LOT OF DUR RUESTIONS

THIS BOOK FOCUSES ON THE PUZZLE OF TRYING TO DEFINE INTELLIGENCE.

THE INTELLIGENCE OF MACHINES AND THE BRAIN CREATING THEM.

THE HUMAN BRAIN IS EXTREMELY CAPABLE, KIND AND IMAGINATIVE, BUT NOT WITHOUT LIMITATION. MACHINES HAVE NO VALUES OR EMPATHY, BUT CAN BE PROGRAMMED TO DO (ALMOST) ANYTHING.

IN DUR QUEST TO CREATE THINKING MACHINES TO ASSIST, EQUAL OR SURPASS US, WHAT ARE THE INGREDIENTS WE NEED?

LET US EXPLORE HOW THESE MACHINES CAME TO BE AND AND WHAT WE EXPECT OF THEM. HOW DO THEY LEARN TO BE INTELLIAENT? HOW DO WE USE THEM? SHOULD WE FEAR THEM? CAN WE TRUST THEM?

PERHAPS THEY ARE DNCY EVER AS GOOD AS THEIR MAKERS - PERHAPS NOT?

SCOPE

LEARNING MACHINES

IMPRESSIVE ENCOUNTERS

HUMAN INTELLIGENCE

DEFINITION/THEORIES

MACHINE INTELLIGENCE

- THE PROBLEM
- DEFINING AI & ITS GOALS

RECENT HISTORY

- 1950-S + DARTMOUTH CONFERENCE
- ENCODED KNOWLEDGE + PERCEPTRONS
- WHY AI WORKS SO WELL NOW

HOW MACHINES LEARN

VARIOUS WAYS OF LOOKING AT
HOW LEARNING HAPPENS

LEARNING ALGORITHMS

- HOW THEY ARE DIFFERENT
- WHAT A MODEL IS
- SOME EXAMPLES

WHY AI IS HARD

MORAVEC, COMMON SENSE AND
A BODY

THE HARDER QUESTIONS

- COST, ETHICS, BLAME, BIAS
 AND HUMAN-NESS
- BUILDING TRUST

WOMEN IN AI

MORE TO EXPLORE

REFERENCES

LEARNING MACHINES

WE HAVE COME A LONG WAY SINCE ALAN TURING'S 1950 PAPER ON COMPUTER INTELLIGENCE.

THERE ARE NOW MACHINES THAT CAN LEARN

COMPUTERS CAN LEARN BY BEING SHOWN SEVERAL EXAMPLES.

OR THEY LEARN THROUGH REWARDS FOR ACHIEVING GOALS

THE LEARNING MACHINE FIGURES OUT THE RULES THAT
BUILD UP TO THE GOAL OR FORM THE PATTERN

COMPUTERS CAN SEE'

HAVING BEEN TRAINED ON SEVERAL MILLION IMAGES (see Stanford Imagenet)

CAN IDENTIFY DBJECTS WITH A GOOD LEVEL OF ACCURACY

THEY CAN DISCOVER PATTERNS IN DATA, THUS ENABLING THEM TO

REASONABLY PREDICT FROM A SCAN, ... RECOGNISE FACES AND IF THERE IS DISEASE ...

TRACK MOVEMENTS

COMPUTERS CAN HEAR'

DATA, WITH ENOUGH TRAINING CAN WRITE UP AUDIO AS TEXT PROGRAMS

SPEECH ABILITY IS CALLED RECOGNITION OR SPEECH TO TEXT.

* SUCH AS GOOGLE AUDIOSET, OPENSLR. ORG (Ted talks)

gera - nigeria garhwali - India gascon - sw france gallo - france gagauz - Turkic gallurese - Ltaly

IT CAN EVEN BE USED TO SAVE ENDANGERED LANGUAGES Seneca Indian language / RIT

DEVICES RESPOND TO VOICE COMMANDS

AND RECOGNISE INDIVIDUAL VOICES

THIS IS CALLED 👚 VOICE RECOGNITION 🥏 OR 🧶 VOICE IDENTIFICATION 🥮

TEXT TO SPEECH (SPEECH SYNTHESIS) ALSO MAKES IT EASIER FOR PEDPLE

OF ALL ABILITIES TO INTERACT WITH MACHINES

make your own home made slime

COMPUTERS CAN 'UNDERSTAND'

PROGRAMS THAT TRANSCATE LANGUAGES

CHAT BOTS THAT HELP OUT VARIOUS WITH TASKS

How can I help? My order hasnit arrived Your reference number? 81-415-36310

INTERNET SEARCH ENGINES RECOGNISE A FAMOUS PERSON PLACE

AND HELP WITH SPELLING GRAMMAR CHECKS, TEXT PREDICTION ETC.

THIS IS CALLED NATURAL LANGUAGE PROCESSING OR NLP 🛑 🔵

COMPUTERS CAN DO

IN ADDITION TO CLEANING FLOORS AND DRIVING CARS PLANES DRONES, CAN SUGGEST THE NEXT PRODUCT THEY TO BUY

AND RECOMMEND

MOVIES

MUSIC

ARTICLES

MORE AND

THEY CAN SENSE EARTHQUAKES

PREDICT FAULTS MACHINERY HEAVY IN

AND DETECT FINANCIAL FRAUDS

Portrait of Edmond Belamy

IT TURNS OUT THAT MACHINES ARE ALSO CAPABLE OF GENERATING ART. AND MUSIC.

apogle "Obvious Al Art"

IMPRESSIVE

ARGUABLY, THESE ATTRIBUTES MAKE A COMPUTER SEEM CLEVERER THAN THE AVERAGE MACHINE.

A QUICK LOOK INTO THEIR PAST REVEALS THAT COMPUTERS HAVE EXCELLED IN SKILLS THAT ONLY THE BRIGHTEST HUMAN MINDS POSSESSED

CHESS - 1996 IBM DEEP BLUE BEAT

GARY KASPAROV

JEOPARDY QUIZ SHOW 2011

IBM WATSON BEAT
KEN JENNINGS & BRAD RUTTER

40 2016

DEEPMIND ALPHA GO BEAT LEE SEDOL

THE WORD 'INTELLIGENT' IS USED AS AN ADJECTIVE FOR SUCH MACHINES
ARE THEY INTELLIGENT? WHAT IS INTELLIGENCE?

WHAT IS INTELLIAENCE?

MEASURING IT DOWN TO A NUMBER HAD UNFORTUNATE CONSEQUENCES FOR HUMANITY WITH THE DEVELOPMENT OF EUGENICS/EVIL ASSOCIATIONS.

THIS SECTION DOES NOT TRAVEL DOWN THE DARK PATH. WE WILL TREAT IT AS A FASCINATING QUESTION LEADING TO GAINFUL INTROSPECTION.

BUT FIRST, A TEST

THIS IS A COMMON FORMAT FOR AN "INTELLIGENCE TEST"

FOR VARIOUS REASONS: HISTORICAL, ETHICAL & CULTURAL, THESE TESTS HAVE BEEN CONTROVERSIAL. IMPORTANTLY, THEY DO NOT EFFECTIVELY REVEAL ANY TRUE INTELLIGENCE.

SURELY, HUMANS ARE A BIT MORE COMPLEX AND CANNOT BE REDUCED TO ONE MEASUREMENT. WHAT THEN IS A SIGN OF INTELLIGENCE IN HUMANS?

13 IT LANGUAGE?

ACTIVATES

PERCEPTUAL

IT

IMAGINE

THINGS

SYSTEM

USES

70

NEW

CHOMSKY, ARGUABLY THE TOP PHILDSOPHER AND LINGUIST THE WORLD HAS PRODUCED, SAYS THAT THE PURPOSE OF LANGUAGE ISN'T COMMUNICATION, BUT THAT

> LANGUAGE EVOLVED AS A MODE OF CREATING AND INTERPRETING THOUGHT

> > THIS ABILITY SEPARATES HUMANS FROM OTHER CREATURES

PARTS PLAYS LANGUAGE TWO INTERNAL EXTERNAL Bee! May DESCRIBE be? THINGS 11) STORIES

SO, LANGUAGE IS AT THE CENTRE OF INTELLIGENCE

- PATRICK WINSTON, MIT

TELL

LEARN

THINGS

NEW

HUMAN INTELLIAENCE

WE CAN AGREE THAT HUMANS CAN BE DESCRIBED AS INTELLIGENT.

THE ABILITY TO

ACQUIRE AND APPLY
KNOWLEDGE AND SKILLS

A MENTAL QUALITY THAT ALLOWS US TO

LEARN

SOLVE PROBLEMS

ADAPT TO NEW SITUATIONS

THERE IS STILL SO MUCH OF THE BRAIN WE DON'T UNDERSTAND

WHAT ABOUT OUR
AUT BRAIN?

WHAT CONNECTS

INTELLIGENCE AND

CONSCIOUSNESS?

HOW DOES

MATTER (BRAIN)

CREATE

NON MATTER (THOUGHT)?

INTELLIGENCE
OUTSIDE EARTH:
IS IT SIMILAR?

INTELLIGENCE ELUDES PRECISE DEFINITION AND MEASUREMENT

THEORIES OF INTELLIGENCE

THERE ARE MANY THEORIES OF INTELLIGENCE AS WELL.

1863-1945

general intelligence
g factor

LL THURSTONE

1887-1955

7 mental abilities

ROBERT STERNBERA 1949 -3 intelligences

AND THE DEBATE CONTINUES:

- ARE THEY INTELLIGENCES OR SKILLS?
- ARE THESE 400D ENOUGH CRITERIA TO 'MEASURE' INTELLIGENCE?
- IS BEING GOOD AT ONE ANY INDICATION OF BEING GOOD AT ANOTHER?
- IS THERE ONE GENERAL INTELLIGENCE OR MULTIPLE INTELLIGENCES?
- 🛑 IS HUMAN INTELLIGENCE GENERAL OR SPECIALISED FOR HUMAN EXPERIENCE?

MACHINE INTELLIAENCE

HISTORY RECORDS MANY INSTANCES OF MECHANICAL CREATIONS: BOTH REAL AND FICTIONAL. THERE ARE EVEN LITERARY WORKS DESCRIBING THINKING BEINGS. IT IS AGAINST THIS BACKDROP THAT WE MEET RENÉ DESCARTES.

MIND BODY DUALISM

RENÉ DESCARTES DEFINED THE MIND-BODY PROBLEM

ANIMALS ARE WONDERFUL MACHINES.

HUMANS TOO. POSSIBLY. EXCEPT WE HAVE MINDS.

RATIONAL VS MECHANICAL

THE MECHANICAL COULD BE IMITATED. NOT THE RATIONAL.

ANIMALS MIGHT ALSO HAVE CONSCIOUSNESS, MEMORY AND FEELING.

BUT HUMANS HAVE LANGUAGE AND THE ABILITY TO THINK.

TWO CENTURIES LATER (1830s), ADA LOUELACE WROTE OF THE ANALYTICAL ENGINE

" . . . HAS NO PRETENSIONS WHATEVER TO DRIGINATE ANYTHING. IT CAN DO WHATEVER HOW TO ORDER IT TO PERFORM

BUT, WHAT IF THERE WAS A MACHINE THAT COULD IMITATE MIND? THE

A SELF COPY

ARTIFICIAL INTELLIGENCE BEGAN WITH AN ANCIENT WISH TO FORGE THE GODS

BRASS FOR BRAIN

THE DESIRE TO CREATE ARTIFICIAL INTELLIGENCE IS AS OLD AS HUMAN CIVILISATION

PAMELA MCCORDUCK GIVES EXAMPLES IN THE FIRST EVER BOOK ON THE HISTORY OF AI

CLOCKWORK REPLICAS OF HUMANS EXIST MORE AS STORIES THAN REALITY

MOST SUCH CHARACTERS, WHETHER ROBOTIC ATTENDANTS OR TINMAN, WERE FRIENDLY, OR ACCOMPLISHED SOME TASKS.

THE STORIES CHANGED
THEME. EVENTUALLY.

GOOD DR EVIL?

OF THE STORIES OF SUCH HUMAN ATTEMPTS, THE MOST CHILLING ACCOUNT OF ALL, IS PROBABLY THE 1818
STORY OF FRANKENSTEIN'S MONSTER BY MARY SHELLEY

THE PROTAGONIST VICTOR FRANKENSTEIN'S CREATION
TURNS OUT TO BE A MONSTER AND STARTS TO
THREATEN AND DESTROY HIS LIFE.

BUT IT NEED NOT BE THIS TERRIFYING.

WE CAN DRAW SOME REASSURANCE FROM ISAAC ASIMOV'S IDEA OF THE THREE LAWS OF ROBOTICS THAT PRIORITISE HUMAN WELL-BEING

	THREE LAWS OF ROBOTICS
()	A robot most mot injure a human or
	through inaction allow a human to come
	La have
	to harm
2	A robot must obey orders except if it conflicts with 1

FROM THE NOUEL 1, ROBOT 1950

THESE STORIES FORCE US TO CONSIDER QUESTIONS THAT WE OUGHT
TO AT LEAST ASK, IN THE PROCESS OF CREATING ARTIFICIAL INTELLIGENCES.

Al IS... WHAT Al DOES

AIVEN WHAT WE UNDERSTAND OF HUMAN INTELLIGENCE, UNSURPRISINALY, ARTIFICIAL INTELLIGENCE HAS NO AGREED DEFINITIONS

THE THINKING MACHINE IDEA

IS VERY CAPTIVATING AND IT

REMAINS A DEFINING THEME

OF ARTIFICIAL INTELLIGENCE

THE GOAL OF AL IS TO BUILD SYSTEMS

THAT THINK AND ACT

LIKE HUMANS

RATIONALLY

ASIDE FROM THE PUZZLES OF WHAT IT MEANS TO BE HUMAN OR RATIONAL, THERE ARE ASPIRATIONS FOR ACHIEVING

SUPERHUMAN INTELLIGENCE

(CAUSING REACTIONS OF FEAR/SKEPTICISM)

Singularity

Intelligence Explosion

Artificial General Intelligence

AGI, AIXI are some terms

Used for this aspiration

AN ASIDE

ON THE BASIS THAT INTELLIGENCE REQUIRES THE 'AGENT'
TO ADAPT SUCCESSFULLY TO A WIDE RANGE OF ENVIRONMENTS

THERE IS EVEN AN EQUATION TO MEASURE A MACHINE'S INTELLIGENCE

A FIRST FORMALISATION

THE EXPERTS: ON AI

HERE IS WHAT SOME WELL-KNOWN PEOPLE HAVE TO SAY ABOUT A!

Al 15 A FIELD THAT 15 DEEPLY HUMAN (with mothing artificial about it)

- FEI FEI LI

Al IS, IN LARGE MEASURE, PHILOSOPHY
- DANIEL DENNETT

Al IS ALMOST A HUMANITIES DISCIPLINE. AN ATTEMPT

TO UNDERSTAND HUMAN INTELLIGENCE AND COGNITION

- SEBASTIAN THRUN

Al MEASURES AN AGENT'S ABILITY TO PERFORM

WELL IN A WIDE RANGE OF ENVIRONMENTS

- MARCUS HUTTER SHANE LEGG

THE EFFICIENCY WITH WHICH YOU TURN

EXPERIENCE INTO GENERALISABLE PROGRAMS

FRANÇOIS CHOLLET

EACH NEW STEP IN A! MERELY REVEALS WHAT REAL INTELLIGENCE IS NOT

- DOUGLAS HOFSTADTER

ADALS OF AI

VERY BROADLY, AT MIGHT BE SAID TO HAVE TWO (RELATED) GOALS

THE DEVELOPMENT OF AL COULD

SPELL THE END OF THE HUMAN RACE

-STEPHEN HAWKING

IT IS A FASCINATING ENDEAVOUR TO UNDERSTAND THE NATURE OF THOUGHT, CONSCIOUSNESS AND INTELLIGENCE.

AS IT NEEDS MORE YEARS OF RESEARCH, WE WILL CONSIDER IT OUTSIDE THE SCOPE OF THIS PIECE OF WORK

AS WE SAW EARLIER,
THE TOOLS CREATED BY
LEARNING MACHINES

CAN

PROCESS/INTERPRET

LARGE AMOUNTS OF DATA

DIFFICULT FOR HUMANS.

AND

AUTOMATE SOME TEDIOUS OR
SUBCONSCIOUS TASKS THAT
PROGRAMS PREVIOUSLY LOULD NOT

THE SECOND GOAL LEADS TO WHAT CAN BE DESCRIBED AS NARROW INTELLIGENCE

BUT FIRST, A LOOK AT HOW WE GOT HERE.

A RECENT HISTORY GENERATIONS OF THINKERS FROM ARISTOTLE, GOTTFRIED LEIBNITZ, GEORGE 808	LE	
BERTRAND RUSSELL, ALL HAVE ATTEMPTED TO FORMALISE HUMAN THOUGHT A DECISION MAKING. THE 1950s NOTCHED UP THE EXCITEMENT.	~	

AI FROM THE 50s

ALAN TURING WONDERED

IF A MACHINE COULD EVER

CONVINCE HUMANS THAT

IT COULD THINK.

AND HE WROTE A PAPER ABOUT IT.

MEANWHILE, MCCULLOCH AND PITTS

CAME UP WITH THE IDEA THAT THE

BRAIN BEHAVES LIKE A TURING MACHINE

VON-NEUMANN AAREED WITH THE BRAIN-COMPUTER
SIMILARITIES- BUT PERHAPS NOT WITH 'THINKING' MACHINES

HE HAD HIS OWN IDEA OF CELLULAR AUTOMATA,
WHICH WERE SELF-REPLICATING MATHEMATICAL STRUCTURES

JOHN VON NEUMANN

AI FROM THE 50s

CHECKERS

1 call this Machine learning

ARTHUR SAMUEL CREATED

A CHECKERS PLAYING PROGRAM.

IT CHECKED MANY POSSIBLE
MOVES AHEAD, ASSIGNED WEIGHTS
TO EACH OUTCOME.

ARTHUR SAMUEL

IT IMPROVED ITS GAME FROM PAST EVENTS

LOGIC THEORIST

HERBERT SIMON

we call this complex Information processing

NEWELL AND SIMON, WITH JC SHAW, FAR AHEAD OF THEIR TIME, WROTE A PROGRAM CALLED LOGIC THEORIST.

IT PROVED THEOREMS FROM PRINCIPIA

MATHEMATICA OF RUSSELL & WHITEHEAD

AI FROM THE 50s

NORBERT WIENER USED THE WORD CYBERNETICS

TO DESCRIBE THE STUDY OF ANY SOCIAL SYSTEM

(HUMAN, ANIMAL OR MACHINE) BASED ON COMMUNICATION

AND FEEDBACK

HIS WORK, BOTH TECHNICAL & PHILOSOPHICAL, WAS ALSO VERY INFLUENTIAL.

CLAUDE SHANNON WROTE A CHESS PLAYING PROGRAM.

HE ALSO BUILT A PHYSICAL MAZE AND A MOUSE

THAT COULD 'LEARN' ITS WAY OUT OF THE MAZE

MARGARET MASTERMAN CREATED THE LANGUAGE
RESEARCH UNIT AND THE WORK SHE DID WAS
MACHINE TRANSLATION - YEARS AHEAD OF TIME AND WITHOUT PROPER CREDIT

MARGARET MASTERMAN

THE DARTMOUTH CONFERENCE

We propose that a two month study be carried out in the Dartmouth college, New Hampshire over the summer of 1956

... learning or any other feature of intelligence .. so precisely described that a machine can be made to simulate it

-McCARTHY, MINSKY, ROCHESTER, SHANNON

HERE ARE THE FOUR CONSIDERED THE FOUNDERS OF THE FIELD

area of study
artificial
Intelligence

HERBERT SIMON

ALLEN NEWELL

ENCODED KNOWLEDAE

HERE ARE SOME PROGRAMS DEVELOPED ON A LOGICAL BASIS

GENERAL PROBLEM SOLVER (1959)

THE FIRST APPROXIMATION OF HUMAN BEHAVIOUR

SOLUED PROBLEMS THAT COULD BE WELL DEFINED

(NOT VERY GENERAL)

CREATED BY NEWELL, SIMON & SHAW

ADVICE TAKER (LATE 1960s)

A CONCEPTUAL MODEL OF A PROGRAM THAT

NOT DOULY SOLVES A LOT OF PROBLEMS,

BUT ALSO TAKES ADVICE WHILE SOLVING THEM.

CONCEPT OF JOHN MCCARTHY

EL12A (MID 19605)

THE FIRST CHATBOT

COULD MIMIC A PSYCHOTHERAPIST

NAMED AFTER THE CHARACTER IN PYGMALION

CREATED BY JOSEPH WEIZENBAUM, MIT,

SHAKEY THE ROBOT (LATE 1960s)

THE FIRST MOBILE ROBOT ABLE TO REASON

PROGRAMMED IN LISP

CREATED BY TEAM AT STANFORD DARPA

(INCLUDING BERT RAPHAEL, NILS NILSSON)

PERCEPTRON

FRANK ROSENBLATT WAS INSPIRED BY MCCULLOCH & PITTS.

HE DESIGNED A 'NEURON' WITH HARDWARE & ELECTRICALS

HE CALLED IT A PERCEPTRON (LATE 1950s)

HE TRAINED IT TO IDENTIFY SHAPES/LETTERS MUCH LIKE HUMANS
SUBCONSCIOUSLY RECOGNISE FACES - (CONTRAST TO THINKING/REASONING TASKS)

AFTER MUCH HYPE SHORTLY FOLLOWED BY THE BELIEF THAT A PERCEPTRON WOULD FAIL AT SIMPLE TASKS, INTEREST WANED.

ROSENBLATT WAS ON THE RIGHT TRACK, THOUGH. HIS APPROACH IS THE ANCESTOR OF ONE OF THE MODERN AI METHODS THAT USES MATHEMATICS — KNOWN AS DEEP NEURAL NETWORKS

* PAPERT & MINSKY ACKNOWLEDGED (MUCH LATER) THE POTENTIAL OF PERCEPTRONS

WHY AI WORKS SO WELL

AT WENT THROUGH HIGHS OF ACHIEVEMENTS AND LOWS (CALLED AT WINTERS)
WITH LACK OF INNOVATION/FUNDING. SYMBOLIC AT DOMINATED - WITH EXPERT
SYSTEMS BRINGING REVENUE. ONLY TOWARDS THE 1990S DID AT BOUNCE BACK.

HERE ARE SOME REASONS WHY IT IS NOW A THRIVING FIELD

DATA

MORE DATA AVAILABLE
FROM MORE INTERNET
USAGE AND TRANSACTIONS

COMPUTE

INCREASE IN COMPUTE POWER

FROM CPUS, APUS AND NEUROMORPHIC

AND QUANTUM CHIPS

ALGORITHM

NAIVE BAYES

BACK PROPAGATION

K MEANS CLUSTERING

NEAREST NEIGHBOURS

REGRESSION

DECISION TREE

SUPPORT VECTOR MACHINES

... AND MORE!

DEVELOPMENT OF

MORE TYPES OF

LEARNING ALGORITHMS

INVESTMENT

MORE ATTENTION AND MONEY

AVAILABLE AS THE BENEFITS

ARE NOW TANGIBLE

HOW TO GET MACHINES TO LEARN

LEARNING TO LEARN

RECALL THAT A GOAL OF AL IS TO BUILD TOOLS FOR HUMANS USING MACHINES THAT CAN TEACH THEMSELVES. EVEN IMPROVE.

THIS ENDEAVOUR, BROADLY, IS MACHINE LEARNING

AI SEEKS TO MIMIC HUMAN THOUGHT AND ACTION. HOW IT GETS THERE
IS ALSO INSPIRED BY SOME FAMILIAR WAYS

WITH REWARDS

SOME MACHINE LEARNING APPROACHES

UNSUPERVISED LEARNING

SUPERVISED LEARNING

REINFORCEMENT LEARNING

NO KNOWN SOLUTION

MAKING INFERENCES

LEARNING FROM
LABELLED DATA

WITHIN CONSTRAINTS + REWARD + PUNISHMENT

SEMI SUPERVISED LEARNING

INVOLVES LEARNING FROM A SMALL AMOUNT OF LABELLED DATA AND LOTS OF UNLABELLED DATA.

* Yann Lecunn calls them 'self supervised'

MACHINE LEARNING TRIBES

IN HIS BOOK
'THE MASTER ALGORITHM'
PEDRO DOMINGOS
DESCRIBES

FIVE TRIBES OF MACHINE LEARNING

EACH WITH ITS KEY ALGORITHM —
ITS OWN ANSWER TO THE
RUESTION 'HOW DO WE LEARN?'

All humans are mortal

+ inverse-deduce this bit

socrates is a mortal

BASED ON LOGIC & PSYCHOLOGY

Example - Inverse deduction

LOOSELY BASED ON THE SYNAPSES AND THE NETWORK OF NEURONS IN THE BRAIN

Example - Back propagation

3 EVOLUTIONARY

BASED ON EVOLUTIONARY BIOLOGY AND GENETICS

Example - Genetic Algorithms

(4) BAYESIAN

BASED ON UNCERTAINTY AND
PROBABILITY AND MAKING
INFERENCES USING STATISTICS

Example - Monte carlo methods

(5) ANALOGISER

BASED ON FINDING SIMILARITY
TO A PREVIOUS EXPERIENCE

Example - Support Vector Machines

AI METHODS

DBVIOUSLY, THERE ARE MORE TECHNIQUES, EACH WITH MANY ALGORITHMS.

17 HAPPENS THAT ALGORITHMS BECOME SUITED TO SOLUE SPECIFIC TYPES OF PROBLEMS

Source: Be coming human ai cheatsheet/andrew Ng: Coursera

				AOR			
		ZENT T MAKINA		ALGORITHI	VIS WE	ENCOUNT	E.R. (

LEARNING ALGORITHM

A LEARNING ALGORITHM IS DIFFERENT TO THE USUAL ALGORITHMS

DUTPUTS THE 'HEURISTICS'/ SET OF RULES FOR HOW ARRIVE AT THE GOAL

USES HEURISTIC TO INTERPRET A NEW INPUT FOR A SIMILAR PROBLEM

AND VOLUME OF INPUTS, THESE GIVEN ENDUAH VARIETY

SOME EXAMPLES

PREDICT A VALUE CLASSIFY AN OBJECT

- USING -

- LINEAR REGRESSION
- K NEAREST NEIGHBOURS
- DECISION TREES
- NEURAL NETWORKS

LINEAR REGRESSION

THIS ALAORITHM IS USED TO MAKE A PREDICTION OF LIKELIHOOD. SAY, WE NEED TO PREDICT HOW MUCH ICECREAM A 7 YEAR OLD IS LIKELY TO EAT

THIS FICTITIOUS TRAINING DATA SHOWS ICECREAM CONSUMED BY AGE GROUPS

For simplicity, we consider only one variable 'Age' as Influencing the number of scoops of icecreams enjoyed. We assume that 'Hunger' 'Sweet-toothedness,' Season' are not factors that are relevant for this example

THE MACHINE LEARNING MODEL WILL NEED TO ESTABLISH A 'LINE-LIKE' RELATIONSHIP BETWEEN AGE AND SCOOPS CONSUMED. IT MIGHT LOOK LIKE...

PARAMETERS TO VARY

- WHERE ON THE Y AXIS THE LINE STARTS
- HOW MUCH IT SLOPES

THE WINNING MODEL WOULD BE ONE THAT MINIMISES ERRORS BETWEEN ACTUAL AND PREDICTED SCOOPS OF ICE CREAM

K NEAREST NEIGHBOUR

THIS ALGORITHM GETS USED TO MAKE PREDICTIONS, CLASSIFY & SEARCH.

IT WORKS ON THE ASSUMPTION THAT PROXIMITY = SIMILARITY

FOR EXAMPLE, TO PREDICT WHAT COLOUR IS UNDERNEATH THE AREY PATCH

THE COLOURS APPEAR TO GO COOL - WARM AND LIGHT - DARK

LOOKING AT ITS NEAREST NEIGHBOURING COLDURS, THE ? SHOULD BE ONE OF THE WARMER, DARKER COLOURS AND LIKELY

- NEARNESS IS CALCULATED FROM ONE OF MANY STANDARD METHODS
- * K IS HOW MANY NEAREST NEIGHBOURS TO CONSIDER

FOR NUMERICAL PREDICTIONS

FOR

THE ALGORITHM CONSIDERS THE AVERAGE OF THE NEAREST K VALUES

THE RESULT WILL BE THE MOST FREQUENTLY OCCURRING FEATURE/EXAMPLE

DECISION TREES

THIS ALGORITHM IS USED FOR BOTH CLASSIFICATION & REGRESSION IT LEARNS RULES BASED ON FEATURES OF THE DATA TO MAKE DECISIONS

LET'S SAY WE ARE TRYING TO TELL APART 3 COLD DESSERTS

CONTAINS	STORED IN	CLASS
MILK	FREEZER	ICECREAM
FRUIT	FREEZER	SORBET
FRUIT	FREEZER	ICECREAM
MILK	FRIDAE	SMOOTHIE
FRUIT	FRIDAE	SMOOTHIE

THE GOAL IS TO LEARN TO ASK A SERIES OF YES/NO QUESTIONS SO AT EACH STAGE WE GET AS MANY OF THE SAME CLASS AS POSSIBLE

NEURAL NETWORKS - 1

NEURAL NETWORKS ARE VERY LOOSELY MODELLED ON HOW THE NEURONS IN OUR DWN BRAIN WORK. THEY CAN BE USED, AMONG OTHER THINGS, TO CLASSIFY OBJECTS.

LET US STEP THROUGH A FEW BUILDING BLOCKS TO UNDERSTAND THEM.

A SIMPLE PERCEPTRON CAN DETECT A DOT ON A PLAIN SURFACE.

(Frank Rosenblatt's artificial neuron from the 1950s)

CONVERT THE IMAGE INTO LITTLE SQUARES

TURN COLDURS INTO NUMBERS

DARKER SQUARES HAVE HIGHER INTENSITY WHITE = 0

BLACK = 1

AREY = ALL NUMBERS
IN BETWEEN

THUS DOTS, EDGES AND SHAPES ARE IDENTIFIED BY A SHARPER CONTRAST
TO NEIGHBOURING SQUARES.

THE INPUTS a, b, c ARE GIVEN RANDOM WEIGHTS x, y, z

ALTHOUGH EXTRA LAYERS OF PERCEPTRONS COULD DO MORE, HERE ARE SOME REASONS WHY FURTHUR RESEARCH DRIED UP:

- NO KNOWN MULTILAYER ALGORITHMS
- DIFFICULT TO TRAIN *THIS* MANY WEIGHTS
- CANNOT FORM MEANINGFUL RULES OUT OF THE WEIGHTS

NEURAL NETWORKS - 11

A MULTI-LAYER (DEEP) ARTIFICIAL NEURAL NETWORK MIGHT LOOK LIKE THIS

EACH NEURON GETS AN INPUT FROM EVERY MEMBER IN THE PREVIOUS LAYER

NEURONS ADD UP WEIGHTED INPUTS + THRESHOLDS

THIS IS INPUT TO THE NEXT LAYER AND SO ON.

THE DUTPUT OF THE FINAL LAYER IS A CONFIDENCE SCORE OF WHAT IT THINKS THE OBJECT IS. e.g. circle or mot

REPEAT THIS FOR EVERY LABELLED TRAINING EXAMPLE

NEURAL NETWORKS - 111

OBVIOUSLY, THE CONFIDENCE SCORE PREDICTION IS NOT GOING TO BE ACCURATE.

THE OBJECTIVE OF THE NEURAL NET IS NOW TO MINIMISE ERRORS FOR ALL TRAINING EXAMPLES THIS PROCESS IS 'LEARNING'

Shape	Predicted	Actual
0	0.23	1
	- 0.49 -	0
0-	— o.9 —	— I
\triangle	_ 0.02 -	— o
ப	_ 0.5 -	- o
	0.7	— o

THIS IS DONE BY TWEAKING WEIGHTS AND THRESHOLDS FOR EVERY NEVRON THROUGH AN ALGORITHM CALLED BACKPROPAGATION

TAKE A CIRCLE MARKED 0.23 WHERE IT SHOULD HAVE BEEN

TO FIX IT

Previous Layer	BRIGHTER NEURONS	DULLER
WE 14 HTS	INCREASE	DECREASE
THRESHOLDS	CHANGE	CHANGE

USING THIS SAME IDEA, RECURSIVELY ADJUST THE PARAMETERS OF ALL THE NEURONS ALL THE WAY BACK IN THE NETWORK

REMEMBER THE SAME ADJUSTMENTS SHOULD WORK WELL OVERALL

FOR CIRCLES

FOR NOT-CIRCLES

ALL THIS IS DONE USING LINEAR ALGEBRA

CALCULUS

real MEANWHILE, THE MACHINE HAS NO , KNOWLEDGE OF WHAT A CIRCLE

ALL ABOUT MODELS

WHAT DOES IT TAKE TO BUILD A MACHINE LEARNING MODEL? AND HOW DO WE KNOW IF ITS ANY GOOD?

BUILD A MODEL

WITH A WELL DEFINED QUESTION THAT NEEDS ANSWERING BEGIN CLASSIFICATION PROBLEM IS THIS A CIRCLE? IS THIS A TUMOUR? REGRESSION PROBLEM DO YOUNGER PEOPLE EAT MORE ICECREAM THAN OLDER PEOPLE? WHAT AMOUNT TO SPEND ON ADS TO INCREASE MARKET SHARE? BUILD MODEL GET INSIGHTS EVALUATE MODEL USE IN REAL WORLD ITERATE STOP WHEN MEASURABLE GOALS HAVE BEEN ACHIEVED WHAT IS THE ACCEPTABLE ERROR LEVEL? WHAT CRITEREA EVALUATES THE OUTPUT? HOW USEFUL IS IT?

CHOOSING MODELS

MODEL BUILDING CONSISTS OF USING THE RIGHT COMBINATION OF
ALGORITHM AND TRAINING DATA, TWEAKED TO MAKE DESIRED 'PREDICTIONS'
THIS PROCESS IS DESCRIBED AS BEING 'PART ART, PART SCIENCE'

THESE CHOICES ARE CLOSELY LINKED AS SEEN BELOW:

	LEARNING STYLE	Supervised	UNSUPERVISED	REINFORLEMENT
THM	NEURAL NETWORKS			
ALADRITI	K NEAREST NEIGHBOUR			
4		-	_	

2	NATURE OF DATA	NUMERICAL DATA	UNSTRUCTURED DATA	SOME Data	LOTS OF DATA
LITHI	LINEAR REGRESSION			~	
ALADI	NEURAL NETWORKS				
					

IT ALSO HELPS TO KNOW PATTERNS OR RELATIONSHIPS IN DATA. FOR THIS,

PREPARING DATA

DATA MAY COME FROM DIFFERENT SOURCES

TO BE USEFUL IN TRAINING MODELS, AS FAR AS POSSIBLE, DATA NEEDS TO BE ...

- ... A CONSISTENT FORMAT
 - # ERROR FREE
 - WITHOUT MISSING BITS

THE DATA MUST BE
PRESENTED USEFULLY

DESPITE THE FACT...

... THAT IT COULD BE HUGE - BIG DATA

BIASED

THERE IS ALSO THE BALANCE BETWEEN

REMOVING

REPRESENTATIVE DATA

ALL THIS IS APTLY NAMED DATA WRANGLING

ALSO IMPORTANT TO KEEP SEPARATE

VALIDATION DATA

UNBIASED

TEST DATA

for comparing multiple models

IS THIS A CIRCLE? BUILD A MACHINE LEARNING TOOL TO SAY, IDENTIFY A CIRCLE, HERE IS WHAT NEEDS TO HAPPEN - AT A VERY HIGH LEVEL RE- BUILD MODEL TRAINING DATA FINE TUNING MODEL MENU · Naive bayes · Back propagation
· Decision tree
· Landom forest 000 . SVM EVALUATE MODEL GET INSIGHTS Test 3 Test 2 Test 1 98% 60% 99% ELIS 4000 SEPARATE TEST SATA TO USE SCORE HOW MAKE DECISIONS ACCURATE/USEFUL IN REAL WORLD USE Test 1 Test 2 Test Test 2 Test 3. Test 1 mm ~~ COLLECT METRICS

AutoML: A new area of research that aims to automate this process within a limited computational budget once data has been collected arxiv 1810-13306

AETINA INSIAHTS

THERE ARE MANY STATISTICAL METRICS TO EVALUATE A MODEL

THEY MEASURE HOW RIGHT THE CORRECT PREDICTIONS ARE AND HOW

WRONG THE ERRORS ARE.

LOOK FOR FALSE NEGATIVES AND FALSE POSITIVES

PUT THESE NUMBERS INTO THE MATRIX AS BELOW FOR AN OVERVIEW

CONFUSION MATRIX		ACTUAL		
		CIRCLE	NOT	
REDICTION	CIRCLE	#TP	#FP	
PREDIC	NOT	# FN	# <i>™</i>	

EASY TO SEE THAT INCREASINGT

ARE USEFUL IN ALL CIRCUMSTANCES

% OF CORRECT IDENTIFICATIONS

ACCURACY = # OF CORRECT PREDICTIONS

TOTAL # OF PREDICTIONS

all errors are equally critical

% OF COPRECT POSITIVE IDENTIFICATIONS

PRECISION = # CORRECT POSITIVES

PREDICTED POSITIVES

false positives are critical

RECALL WILL REDUCE PRECISION,

AND THAT NOT ALL METRICS

90 OF POSITIVES CORRECTLY IDENTIFIED

RECALL = # PREDICTED POSITIVES # CORRECT POSITIVES

false negatives are critical

FOR REGRESSION PROBLEMS MEAN SQUARED ERROR IS ONE OF MANY

HELPFUL METRICS. IT HIGHLIGHTS LARGER ERRORS

MEAN SQUARED ERROR = 1 x SUM OF ALL (ACTUAL - PREDICTED VALUE)2

AETINA INSIAHTS

LOOK OUT FOR UNDERFITTING OR OVERFITTING THE MODEL

HERE IS A VERY COMMON VISUAL EXAMPLE FOR THIS

UNDERFITTED

JUST RIGHT

HIGH BIAS

HIGH VARIANCE

DVERFITTED

OVERSIMPLIFIES DATA

FOLLOWS NOISE

TOO MANY ASSUMPTIONS

CANNOT GENERALISE

SO IN OUR EXAMPLE OF 'IS THIS A CIRCLE',

AIVEN: TEST DATA FOR A MODEL TO TRAIN ON.

WHEN THE MODEL RUNS ON (NEW) TEST DATA:

UNDERFITTING

MIGHT MEAN ANYTHING LODPY OR CLOSED

OVERFITTING

MIGHT MEAN ANY CIRCLE NOT IN THE TRAINING SET

HOW GOOD IS THE MODEL?

IS THE PROBLEM WELL-DEFINED?

UNBIASED

ARE THE DATA AND ALGORITHMS
REPRESENTATIVE & FAIR?

ACCURATE

ARE THE PREDICTIONS CONSISTENT WITH WHAT IS EXPECTED?

UNDERSTANDABLE

ARE THE ACTIONS OF THE ALGORITHM EASY TO EXPLAIN?

SECURE

IS THE DATA, ALGORITHM & CODE TAMPER-PROOF?

PRIVATE

IS SENSITIVE DATA KEPT
SAFE FROM PRYING EYES?

A REASONABLY GOOD MODEL ANSWERS YES TO MOST OF THESE QUESTIONS

THE HARD PROBLEM THAT IS A!

IT APPEARS THAT GETTING AN ALGORITHM TO PERFORM WELL ON A

BIG DATASET WITH VERY LITTLE LABELLED DATA IS A TRICK WE HAVEN'T

YET MASTERED. BUT THAT IS NOT ALL.

EASY THINGS ARE HARD

'EASY THINAS ARE HARD'
- MORAVEC'S PARADOX

EVEN FROM AN EARLY AGE, HUMANS

(DUE TO MILLENIA OF EVOLUTION)

ARE REMARKABLY GOOD AT SENSORY

AND MOTOR SKILLS.

IN CONTRAST, A PROGRAM WOULD NEED MILLIONS OF EXAMPLES,
COUNTLESS HOURS OF TRAINING
MUCH INVESTMENT AND RESEARCH
TO PULL OFF THE SAME FEAT

WE CAN MOVE AROUND, PICK UP AND USE DBJECTS, RECOGNISE FACES AND VOICES (EMOTIONS, NON VERBAL CUES) WITH RELATIVE EASE.

'AN IMPERFECT RULE OF AI IS THAT ANYTHING A HUMAN CAN DO IN
LESS THAN A SECOND OF MENTAL THOUGHT, AI WILL ALSO BE ABLE TO DO'
- ANDREW NG

MORAVEC'S PARADOX CONTINUES TO BE TRUE SINCE THE EIGHTIES.

COMMON SENSE

WHAT IS IT?

"THE TROPHY DOESN'T FIT IN THE SUITCASE
BECAUSE IT WAS TOO SMALL"

"THE TROPHY DOESN'T FIT IN THE SUITCASE
BECAUSE IT WAS TOO BIG"

PEOPLE CAN EASILY WORK OUT WHAT THE IT REFERS TO IN BOTH CASES UNLIKE A PROGRAM, WHICH HAS NO FAMILIARITY WITH PACKING THINGS

AN ALTERNATE TURING TEST BASED ON THESE WINDGRAD PAIRS OF SENTENCES HAS BEEN SUGGESTED, TO ASSESS MACHINE INTELLIGENCE

"COMMONSENSE, THE DARK MATTER OF A!

- DREN ETZIONI

THERE HAVE BEEN ATTEMPTS TO CODIFY COMMONSENSE.

MACHINE COMMON SENSE

DARPA MCS

OPEN MIND COMMON SENSE

MIT OMCS

19805

WORLD ENCYCLOPEDIA

OF COMMON SENSE

CYCORP CYC

THERE HAS BEEN MUCH DEBATE ON WHETHER THEY ARE EVER FINISHED, USEFUL, OR HAVE EVEN MADE WORTHY CONTRIBUTIONS TO ALL

EMBODIMENT

THE BELL RANG. ALL THE KIDS RAN OUT.

ONLY ONE STAYED IN WITH A BOOK.

IMPLICIT IN THESE SENTENCES IS A HUGE SET OF PRIORS

THERE IS A VIEW THAT AT CANNOT ACHIEVE INTELLIGENCE UNLESS IT HAS A MORE PHYSICAL-SENSE-EXPERIENCE LIKE HUMANS.

ANY AMOUNT OF ENCODED KNOWLEDGE WILL NOT SUFFICE TO CONVEY CAUSALITY: THAT ONE EVENT OR STATE MAY BE RESPONSIBLE FOR ANOTHER.

NOT ENOUGH TO HAVE THE

RESOURCE FULNESS OF THE THIRSTY CROW

NOT ENOUGH TO MAKE A MACHINE

WONDER WHY THE KID STAYED BACK.

DOES THAT MEAN THE ARTIFICIAL MIND NEEDS AN ARTIFICIAL BODY TOO?

THE HARDER AUESTIONS
TERE WE LOOK AT SOME OF THE MORE OPEN-ENDED, UNRESOLVED QUESTIONS THAT EVERY THINKING PERSON MIGHT COME UP WITH IN THE PROCESS OF CREATING OR INTERACTING WITH AI

COST OF A

BUILDING A GOOD MACHINE TOOL IS NOT CHEAP. NOT ALWAYS.

IT REQUIRES TREMENDOUS AMOUNTS

OF COMPUTING POWER, TONS OF DATA ...

. . . AND STORING THEM
IN DATA CENTRES!

THE COST OF CARRYING DUT
THESE COMPUTATIONS IS HIGH

ENOUGH TO SEEM LIKE

A REASDN

NOT TO DO THEM.

THIS MIGHT SLOW DOWN INNOVATIONS OR IMPROVEMENTS IN EXISTING ONES

SUCH TECH ALSO COMES WITH AN ENVIRONMENTAL COST

CARBON EMISSIONS

ASSOCIATED TO TRAINING

AND DEPLOYING A MODEL

HAVE BEEN LIKENED TO...

FIVE TIMES THE LIFE TIME EMISSIONS
OF AN AVERAGE CAR

arkiv.org/labs/1906-02243

GREEN TECH ?

THERE ARE NEW AREAS

DF RESEARCH AND

A PUSH TOWARDS

VEFFICIENT HARDWARE

VEFFICIENT ALGORITHMS

VUSING PRETRAINED MODELS

TRACKING EMISSIONS

DISCLOSING EMISSIONS

VISING SUSTAINABLE CLOUD PROVIDERS

WHAT WILL THE COST OF PROGRESS IN AL BE?

INVENT OR DECEIVE

MENERATIVE ADVERSARIAL NETWORKS OR GANS ARE NEURAL NETWORKS
THAT CAN AENERATE NEW DATA THAT RESEMBLE TRAINING DATA

THIS COULD BE

TEXT

IMAGES

AUDIO

VIDEO

THIS ENABLES AT TO CREATE ART OR COMPOSE MUSIC

GANS CAN BE USED IN SCIENTIFIC RESEARCH

TO ANALYSE

EFFECTIVENESS

OF A DRUG

FOR DENTAL
RECONSTRUCTION
(groundai.com)
ORAL-3D

DATA FOR QUICKPATH
TYPING ON DEVICES
(deepai.org)

IN FRAUD

PREVENTION AND

IN CYBERSECURITY

(arxiv.org 1907.03355)

THIS IS ALSO THE TECHNOLOGY BEHIND DEEPFAKES - THOSE VERY CONVINCING VIDEOS ON THE INTERNET USED TO MISLEAD AND MANIPULATE

WHAT CONTROLS OR TOOLS DO WE HAVE TO HELP US BE A BIT MORE DISCERNING? WHEN THE AL DOES INVENT
SOMETHING USEFUL, WHO GETS
THE CREDIT?

TRANSPORT OR HURT

A RUNAWAY TRAIN CAR IS HURTLING DOWN THE TRACKS AND CAN'T STOP

DO NOTHING \longrightarrow AND 4 PEOPLE ON THE TRACK GET KILLED DIVERT IT \longrightarrow AND IT KILLS ONE PERSON ON THE TRACK

WHAT IS TO BE DONE?

THIS DILEMMA IS CALLED THE TROLLEY PROBLEM IN PHILOSOPHY

THIS IS A PROBLEM THAT APPLIES TO A LOT OF THE AI-POWERED

DECISION MAKING SYSTEMS.

HOW WOULD A SIMILAR DECISION BE MADE?

IN CASE OF AN EMERGENCY WHO WOULD THE AI SAVE?

THE PASSENGER

OR

THE PEDESTRIAN

IN CASE OF AN ACCIDENT
WHO GETS THE BLAME?

THE OCCUPANT

OR

THE SDFTWARE

DECISIONS & ETHICS

AI TOOLS ARE USED TO MAKE LIFE ALTERING DECISIONS. EVERY SUCH ALGORITHM NEEDS TO BE EXAMINED IN ORDER THAT IT CAN BE TRUSTED

APPROVE

LOANS

WHO THEN, DOES IT REJECT AND WHY?

PAROLE

WHO IS DENIED PARDLE AND IS THAT FAIR?

HIRE OR PROMOTE

WHAT FACTOR(S) LED TO THE NON-HIRING DECISION?

GIVE A DIAGNOSIS

WHOSE MEDICAL DATA

IS LEAKED TO AN

INSURANCE COMPANY?

WHOSE INTEREST IS
THE ALADRITHM
PROTECTING?

WHAT HARM MIGHT
THE DECISION CAUSE
AND TO WHO?

WHAT IS

IF THE DATA IS

REPRESENTATIVE,

IS THE ALAORITHM

FAIR OR BIASED?

THESE ARE QUESTIONS NOT JUST FOR PROGRAMMERS TO ENCODE, BUT ALSO FOR THE LAWMAKERS, THE EXPERTS AND THE PUBLIC TO GET INVOLVED.

THE HUMAN FACTOR

REMEMBER WE SAID THAT A GOAL OF AI IS TO THINK LIKE HUMANS

AND ACT RATIONALLY. A TALL ORDER, GIVEN HUMAN THOUGHT AND ACTION

ARE NOT PREDICTABLE OR STRUCTURED

SOCIETAL BIAS

WE CARRY BIASES

ARE WE ALSO ENCODING THEM?

AUTOMATION BIAS

DO WE ACCEPT COMPUTERISED'

DECISIONS WITHOUT QUESTION

AND COMMON SENSE?

IRRATIONAL BEHAVIOUR

ARE WE SURE OF OUR OWN CONSISTENT BEHAVIOUR IN SIMILAR

CIRCUMSTANCES?

FAIRNESS IS UNDEFINED

FAIRNESS TO ONE AROUP

MIGHT COME

AT THE COST

OF FAIRNESS TO ANOTHER

ACCURACY IS NEVER ACHIEVABLE

ACCURATE need MORE DATA

PREDICTIONS

MORE DATA need MORE MONEY

That is a tradeoff we make

HOW TO TRUST AI

SUPERINTELLIGENT HUMAN-LIKE-OR-SURPASSING AT HAS NOT TAKEN OVER THE WORLD (YET!). BUT WE ARE ALREADY APPLYING "INTELLIGENT" TOOLS TO MAKE IMPORTANT DECISIONS ON OUR BEHALF.

HOW DO WE HOLD THESE ALADRITHMS TO ACCOUNT?

THESE MODELS

ARE NOT EASY

TO INTERPRET

BUT THEY CAN

BE PROBED TO

GET INSIGHTS

FOR EXAMPLE - IN THE ICECREAM CASE

WEIGHTS GIVEN TO EACH FEATURE

Hair Colour	
Time in queue	+
Education	_
Age	++

INFLUENCE OF EACH FEATURE TO OUTCOME

THESE RESPONSES HELP TO DETERMINE THE BASIS FOR A DECISION - TO SEE WHETHER A CERTAIN GENDER, RACE OR QUALIFICATION HAD MORE OR LESS ADVANTAGE IN AETTING A MORE DESIRABLE OUTCOME.

+ AUDITS +

THIS - EXPLAINABLE AT - IS A NEW AREA OF RESEARCH. IN COMBINATION WITH GOOD GOVERNANCE, REGULAR AUDITS, AND A GOOD MODEL, BECOMES RESPONSIBLE AT - MORE DESERVING OF OUR TRUST.

CULMINATION

BY TORETHER AI WORKS WORKING OTHER WITH DISCIPLINES

NEUROSCIENCE

PSYCHOLOGY

COMPUTER SCIENCE

MATHEMATICS/ STATISTICS

LINGUISTICS

BIOM ECHANICS / PHYSICS

HOWEVER, THE OUTPUT FROM AI IMPACTS NEARLY EVERY ASPECT OF OUR INDIVIDUAL AND COLLECTIVE LIVES. THE INFLUENCE OF NARROW AI NEEDS MORE ATTENTION (THAN FUTURE AGI) IN TERMS OF BREACHES IN SECURITY, PRIVACY & TRUST AND OF MANIPULATING OUR THOUGHTS WITH ALGORITHM-CHOSEN CONTENT.

WHEN WITH Al IMPACT CAN POSITIVELY CREATED IN COLLABORATION POLICY MAKERS, EXPERTS AND THOSE FOR WHO IT IS INTENDED.

AI IS MORE PROFOUND THAN ELECTRICITY OR FIRE

- SUNDAR PICHAL

WE	NEED TO KNOW, SHAR	N IN	
Wt	AND WHO KNOWS -		

WOMEN IN AI

FEI-FEI LI

REVOLUTIONISED

COMPUTER VISION

WITH IMAGENET

ACM FELLOW, SPEAKER
AND MENTOR

ISA BELLE AUYON

COINVENTER OF
SUPPORT VECTOR
MACHINES &
SIAMESE
NEURAL NETWORKS

RUZENA BAJCSY

PERCEPTION METHODS
IN ROBOTICS AND
IN MEDICAL IMAGE
ANALYSIS

ACM ALLEN NEWELL AWARD

LATANYA SWEENEY

KNOWN FOR

DATA PRIVACY LAB

AND FOR THE IDEA

OF K-ANONYMITY

(TO RE-IDENTIFY

ANONYMISED DATA)

MARGARET BODEN

MIND'S COMPUTATION

MODELS & PHILOSOPHY

OF ARTIFICIAL LIFE

HAVA SIEGELMANN

RAN LIFE LONG

LEARNING MACHINE

PROGRAM@ DARPA

INVENTED

SUPER-TURING

COMPUTATION

WOMEN IN A

ANIMA ANANDKUMAR

PIONEER OF TENSOR
ALGORITHMS, PROMOTER
OF DEMOCRATISING AI
MENTOR, SPEAKER.

VIVIENNE SZE

KNOWN FOR

RESEARCH IN

ENERGY EFFICIENT

MACHINE LEARNING

DAPHNE KOHLER

CO-CREATOR OF MOOC AND USES MACHINE LEARNING FOR DRUG DISCOVERY

TIMNIT GEBRU

KNOWN FOR
RESEARCH IN
ETHICAL ARTIFICIAL
INTELLIAENCE,
SPEAKER@TED

TABITHA GOLDSTAUB

CHAIR OF UK GOV AI COUNCIL TO CHAMPION RAPID RESPONSIBLE AI

HILARY MASON

ML DATA SCIENTIST

ADVISOR TO BUSINESSES

MENTOR TO STUDENTS

MORE TO EXPLORE

WITH A TOPIC AS VAST AS AI, IT IS HARD TO BE ABLE TO COVER.
EVERY ASPECT OF IT WITHOUT VEERING AWAY FROM THE MAIN THREAD

HERE ARE A FEW INTERESTING ASIDES I WANT TO HIGHLIGHT SHOULD YOU WISH TO EXPLORE

- OTHER WAYS TO LEARN- TRANSFER LEARNING, GENETIC ALGORITHMS
- ADVERSARIAL ATTACKS ON MODELS
- USE SYMBOLIC AI WITH TODAY'S TECH
- ROBOTICS & NEW LAWS FOR ROBOTS
- QUANTUM MACHINE LEARNING
- CONSCIOUSNESS IN CONTEXT OF HUMAN-LIKE AT
- CONTRIBUTIONS OF:

DAVID RUMELHART JAMES MCCLELLAND GEOFFREY HINTON JUDEA PEARL
RAY KURZWEIL HANS MORAVEC LESLIE KAELBLING YANN LE CUNN
YOSHUA BENGIO RAY SOLOMONOFF OLIVER SELFRIDGE TESSA LAU HOD LIPSON
TRENCHARD MORE VLADIMIR VAPNIK JOY BUOLAMWINI MICHAEL I JORDAN
CHRISTOPHER STRACHEY DIETRICH PRINZ DEMIS HASSABIS IAN ADODFECLOW
JOSEPH WEIZENBAUM GERALD SUSSMAN ANDREW NG MOOJAN ASGHARI
ADOLFO GUZMAN JOHN KOZA, CAROL E REILEY DANIEL BOBROW AYANNA HOWARD
TOM MITCHELL ROSS QUINLAN STEVE MUGGLETON RANA KALIDUBY
RODNEY BROOKS DAVID MERR NICK BOSTROM ARTHUR C CLARKE ANDREA FROME
JOHN SEARLE STANLEY KUBRICK JEFF HAWKINS STEPHEN WOLFRAM
DAWN SONG DAVID CHALMERS MELANIE MITCHELL OLGA RUSSAKOVSKY
REGINA BARZILAY CHRISTOF KOCH CATHY D'NEIL ILYA SUTSKEVER PETER NORVIG
SEBASTIAN THRUN ANIL K JAIN ANDREJ KARPATHY RACHEL THOMAS
JOHN HOLLAND DAVID HECKERMAN PETER HART DOUGLAS HOFSTADTER

MY REFERENCES

Online courses

MIT opencourseware - Patrick Winston's lecture series Stanford - Andrew Ng - on coursera Al for everyone - Deeplearning.ai Andrew Ng IBM on Artificial intelligence - coursera

Books

Machines who think - Pamela McCorduck
Hello World - Hannah Fry
Artificial Intelligence: A Guide for thinking humans - Melanie
Mitchell
Master Algorithm - Pedro Domingos
Life 3.0 - Max Tegmark
Weapons of Math Destruction - Cathy O'Neil

Intelligence

R Sternberg Human intelligence - <u>britannica.com</u> Introduction to Psychology - <u>opentextbc.ca</u> <u>plato.stanford.edu</u>

- Innateness and language
- Chomsky on language
- Artificial intelligence

Chomsky and Origins of language - news.mit.edu
Chomsky - Language and Thought - youtube interview
Shane Legg - Talk on youtube
Daniel Dennet - Wired Interview
Will AI achieve consciousness? - Wired
Common sense to computers - quantamagazine.org
A tribute to Alan Turing - thoughtworks.com

MY REFERENCES

Concepts/Algorithms/Trends

- machinelearningmastery.com
- becominghuman.ai
- towardsdatascience.com
- kdnuggets.com
- stateof.ai

Tools A brief history of ASR (automatic speech recognition) - medium.com

Cost Prepare for AI to produce less wizardry - Wired

Privacy/Security. Perfectly privacy preserving AI - towardsdatascience.com

Learning Models Continuous Delivery for Machine Learning - Thoughtworks.com

Sustainability

Training a model and emission five times a car's - MIT technology review

Environmental impact of AI - Forbes

Explainability

christophm.github.io/interpretable-ml-book/

Talks/Podcasts/Videos

Bias in Algorithms - Joy Buolamwini Limitations in AI - Timnit Gebru Algorithmic Fairness, Privacy and Ethics - Michael Kearns, Lex Fridman Measure of Intelligence - Francois Chollet Lex Fridman On AI and machine learning - <u>AnitaB.org</u> Fei Fei Li Human centred AI - Fei Fei Li