
58 5 The Untyped Lambda-Calculus

The choice of evaluation strategy actually makes little difference when dis-
cussing type systems. The issues that motivate various typing features, and
the techniques used to address them, are much the same for all the strate-
gies. in this book, we use call h value, both because it is fo st.
well- own languages and because it is the easiest to emich with features_
suCh-as exceptions (Cha teLlA) and.references (ChapLer...l3).

5.2 Programming in the Lambda-Calculus

The lambda-calculus is much more powerful than its tiny definition might
suggest. In this section, we develop a number of standard examples of pro-
gramming in the lambda-calculus. These examples are not intended to sug-
gest that the lambda-calculus should be taken as a full-blown programming
language in its own right -all widely used high-level languages provide clearer
and more efficient ways of accomplishing the same tasks-but rather are in-
tended as warm-up exercises to get the feel of the system.

Multiple Arguments

To begin, observe that the lambda-calculus provides no built-in support for
multi-argument functions, Of course, this would not be hard to add, but it is
even easier to achieve the same effect using higher-order functions that yield
functions as results. Suppose that s is a term involving two free variables x
and y and that we want to write a function f that, for each pair Cv,w) of
arguments, yields the result of substituting v for x and w for y in s. Instead
of .. fAx , y) . 5, as we might in a richer programming langu~
write f = Ax.Ay_~ That is, f is a function tbat, given a value v for x, yields a
function that, given a value w for y, yields the desired result. We then apply
f to its arguments one at a time, writing f v w (i.e., (f v) w),which reduces
to CCAy.[x - v]s) w) and thence to [y - w][x - v]s. This transformation
of multi-argument functions into higher-order functions is called currying in
honor of Haskell Curry, a contemporary of Church.

Church Booleans

Another language feature that can easily be encoded in the lambda-calculus
is boolean values and conditionals. Define the terms tru and fl s as follows:

tru = At. Af. t;
fls = At. Af. f;

5.2 Programming in the Lambda-Calculus 59

(The abbreviated spellings of these names are intended to help avoid confu-
sion with the primitive boolean constants true and false from Chapter 3.)

The terms t ru and fls can be viewed as representing the boolean values
"true" and "false," in the sense that we can use these terms to perform the
operation of testing the truth of a boolean value. In particular, we can use
application to define a combinator test with the property that test b v w
reduces to v when b is tru and reduces to wwhen b is fl s.

test = Al. Am. An. 1 m n;

The test combinator does not actually do much: test b v wjust reduces to
b v w.In effect, the boolean b itself is the conditional: it takes two arguments
and chooses the first (if it is tru) or the second (if it is fl 5). For example, the
term test tru v w reduces as follows:

test tru v w
(Al. Am.An.l mn) truvw
(Am. An. tru mn) vw
(An. tru v n) w
tru v w
(At. At . t) v w
(At. v) w
v

by definition
reducing the underlined redex
reducing the underlined redex
reducing the underlined redex
by definition
reducing the underlined redex
reducing the underlined redex

We can also define boolean a e orsJike.loili~al-G"njunction..a"Junctions:

and = Ab. Ac. b c fls;

That Is, and is a function that, given two boolean values b and c, returns c if
b is tru and fl s if b is fl s; thus and b c yields tru if both b and care tru
and fls if either b or c is fl s.

and tru tru;

• (At. Af , t)

and tru fls;

• (At. Af, f)

5,2.1 EXERCISE [*]: Define logical or and not functions. o

60
5 The Untyped Lambda-Calculus

Pairs

Using booleans, we can encode pairs of values as terms.

pair < Af.As.Ab. b f 5;
fst = Ap. p tru;
snd < Ap. p fls;

That is, pa i r v wis a function that, when applied to a boolean value b, applies
b to v and w.By the definition of booleans, this application yields v if b is t ru
and w if b is fls, so the first and second projection functions fst and snd
can be implemented simply by supplying the appropriate boolean. To check
that fst (pa i r v w) -' v, calculate as follows:

fst (pa'i r v w)
fst «M. As. Ab. bfs) vw)
fst (CAs. Ab. b v s) w)
f'st (Ab . b v w)
(Ap. p tru) (Ab. b v w)
CAb. b vw) tru
tru vw

-' v

by definition
reducing the underlined redex
reducing the underlined redex
by definition
reducing the underlined redex
reducing the underlined redex
as before.

Church Numerals

Representing numbers by lambda-terms is only slightly more intricate than
what we have just seen. Define the Church numerals co, Cl, C2, etc., as follows:

~l.h 1:-
1)- - "1
rh,(~ z.)

)'1 [J »)

Co = As.
CI = As.
(2 == As.
(3 = As.
etc.

Az. z;
Az . 5 z;
Az _ 5 (5

Az _ 5 (5
z) ;
(s z));

That is, each number n is represented by a combinator C n that takes rwo
arguments,s and z (for "successor" and "zero"), and applies s, n times, to z.
Aswith booleans and pairs, this encoding makes numbers into active entities:
the number n is represented by a function that does something n times-a
kind of active unary numeral.
(Th eader may already have observed tbat Co and fls are acmall the

same term. S' . ar "puns" are common illassembly languages, wh _the.
same pattern of bits may represent many different values-an int, a float.,c....-..._ _'

5.2 Programming in the Lambda-Calculus 61

a~,;;a;:;d~dr::eTs;:s:::,~f=o::uo:r;:c:;h:a~ra;:c;,:t:e;:rs~'.;.e~tc~.7i~::;d:;e2P!::,e:;:.n::di:::·;:0:;;g~0:::n:;,,;.h:::o~W~it;.;i~S~in~te~r:!p~r;:e.::te:;.:d;:,,-,an~d,-"in"-
low- evellanguages suc as ,which a so identifies a and fa 1se.l
We can define the successor function on Church -;'umerals as follows:

sec = An. As. Az. s Cn s z);
The term scc is a combinator that takes a Church numeral n and returns
another Church numeral-that is, it yields a function that takes arguments 5

and z and applles 5 repeatedly to z. We get the right number of applications
of s to z by first passing 5 and z as arguments to n, and then explicitly
applying 5 one more time to the result.

5.2.2 EXERCISE [**]: Find another way to define the successor function 00 Church
numerals. 0

Similarly, addition of Church numerals can be performed by a term plus
that takes two Cburch numerals, m and n, as arguments, and yields another
Church numeral-i.e., a function-that accepts arguments 5 and z, applies s
iterated n times to z (by passing 5 and z as arguments to n), and then applies
5 iterated m more times to the result:

plus = Am. An. As. Az. m 5 Cn s z);
The impiementation of multiplication uses another trick: since pl us takes
its arguments one at a time, applying it to just one argument n yields the
function that adds n to whatever argument it is given. Passing this function
as the first argument to m and Co as the second argument means "apply the
function that adds n to its argument, iterated m times, to zero," i.e., "add
together m copies of n."

times = Am. An. m (plus n) co;

5.2.3 EXERCISE [* *]: Is it possible to define multiplication
without using pl us?

on Church numerals
o

5.2.4 EXERCISE [RECOMMENDED, **]: Define a term for raising one number to the
power of another. 0

To test whether a Church numeral is zero, we must find some appropriate
pair of arguments that will give us back this information-specifically, we
must apply our numeral to a pair of terms zz and 55 such that applying ss
to zz one or more times yields fls, while not applying it at all yields t ru.
Clearly, we should take zz to be just tru. For 55, we use a function that
throws away its argument and always returns fls:

.,.

62
5 The Untyped Lambda-Calcutug

Figure 5·1: The predecessor function's "inner loop"

iszro " Am. m (AX. fls) tru;

iszro C1;

• (At. At. f)

iszro (times Co C2);

• (At. Af. t)

Surprisingly, subtraction using Church numerals is quite a bit more difficult
than addtrion. It can be done using the following rather tricky "predecessor
function," which, given Co as argument, returns Co and, given C'+i, returns c.:
zz =: pair Co co;
ss " Ap. pair (snd p) (plus c\ (snd p));
prd " Am. fst (m S5 zz);

Tbis definition works by using mas a function to apply mcopies of the func-
tion ss to the starting value zz. Each copy of ss takes a palr of numerals
pai r c, Cj as its argument and yields pai r Cj Cj+l as its result (see Figure 5-
l), So applying ss, mtimes, to pai r Co Co yields pai r Co Co when m = a and
pai r cm_! Cm when mis positive. In both cases, the predecessor of mis found
in the first component.

5.2.5 EXERCISE[**]: Use prd to define a subtraction function. o

5.2 Programming in the Lambda-Calculus 63

5.2.6 EXERCISE[** J: Approximately how many steps of evaluation (as a function
of n) are required to calculate prd cn? 0

5.2.7 EXERCISE[**]: Write a function equal that tests two numbers for equality
and returns a Church boolean. For example,

equal C3 C3;

~ (At. Af. t)

equal C3 Cz;

• (At. Af. f) o

Other common data types like lists, trees, arrays, and variant records can
be encoded using similar techniques.

5.2.8 EXERCISE[RECOMMENDED,***]: A list can be represented in the lambda-
calculus by its fold function. (OCaruJ's name for this function is fo 1d_l eft;
it is also sometimes calied reduce .) For example, the list [x, y, z] becomes
a function that takes two arguments c and n and returns C x (c y (c z n))).
What would the representation of ni 1 be? Write a function cons that takes
an element h and a list (that is, a fold function) t and returns a similar rep-
resentation of the list formed by prepending h to t. Write i snil and head
functions, each taking a list parameter. Finaliy, write a tai 1 function for this
representation of lists (this is quite a bit harder and requires a trick analogous
to 'the one used to define p rd for numbers). 0

Enriching the Calculus

W~ have seen that booleans, numbers, and the operations on the~ c!ill be
encoded in the pure lambda-calculus. Indeed, strictly speaking, we can do all
the programming we ever need to without going outside of the pure system.
H~, when worklrig wlifi examples it is often convenient.to inClude the
p!imitive booleans and numbers (and possibly other data types) as well. When
we need to be clear about precisely which system we are working in, we will
use the symbol A for the pure lambda-calculus as defined in Figure 5-3 and
ANB for the enriched system with booleans and arithmetic expressions from
Figures 3-1 and 3-2.
In ANB, we actualiy have two different implementations of booleans and

two of numbers to choose from when writing programs: the real ones and
the encodings we've developed in this chapter. Of course, it is easy to convert
back and forth between the two. To turn a Church boolean into a primitive
boolean, we apply it to true and false:

6-

64
5 The Untyped Lambda-Calculus

realbool = Ab. b true false;
To go the other direction, we use an if expression:

churchbool = Ab_ if b then tru else fls;

Wecan build these conversions into higher-level operations. Here is an equal-
ity function on Church numerals that returns a real boolean:

realeq = Am. An. (equal m n) true false;
in the same way, we can convert a Church numeral into the corresponding

primitive number by applying it to succ and 0:

real nat = Am. m (Ax. succ x) 0;

We cannot apply m to succ directly, because succ by itself does not make
syntactic sense: the way we defined the syntax of arithmetic expressions,
succ must always be applied to something. We work around this by pack-
aging succ inside a little function that does nothing but return the succ of
its argument.
The reasons that primitive booleans and numbers come in handy for ex-

amples bave to do primarily with evaluation order. For instance, consider
the term sec CJ. From the discussion above, we might expect that this term
should evaluate to the Church numeral C2. In fact, it does not:
sec c];

• (As. Az. 5 ((As'. Az'. 5' z') 5 z))

This term contains a redex that, if we were to reduce it, would bring us (in
two steps) to cz, but the rules of call-by-value evaluation do not allow us to
reduce it yet, since it is under a lambda-abstraction.
There is no fundamental problem here: the term that results from evalu-

ation of scc CI is obviously behavioratty equivalent to C2, in the sense that
applying it to any pair of arguments v and w will yield the same result as
applying c, to v and w. Still, the leftover computation makes it a bit difficult
to check that our scc function is behaving the way we expect it to. For more
complicated arithmetic calculations, the difficulty is even worse. For example,
ti mes C2 C2 evaluates not to C4 but to the following rnonstrostry:

times (2 (2;

• (As.
Az.

(As'. Az'. s' (5' z')) S
((As' .

5.2 Programming in the Lambda-Calculus 65

t\z' .
(As". Az". 5" (5" Z")) 5'
((As". Az".z") 5' Z'))

5

Z))

One way to check that this term behaves like C4 is to test them for equality:

equal (4 (times (2 (2);

• (At. Af. t)

But it is more direct to take ti mes c, c, and convert it to a primitive number:

real nat (times (2 C2);

• 4

The conversion has the effect of supplying the two extra arguments that
ti mes c, cz is waiting for, forcing all of the latent computation in its body.

Recursion

Recall that a term that cannot take a step under the evaluation relation is
called a normal form. Interestingly, some terms cannot be evaluated to a nor-
mal form. For example, the divergent combinator

omega = (Ax. x x) (Ax. x x);

contains just one redex, and reducing this redex yields exactly omega again!
Terms with no normal form are said to diverge.
The omega combinator has a useful generalization called the fixed-point

combinator,6 which can be used to help define recursive functions such as
factorial?

fix = ,If. (Ax. f (Ay. x x y)) (Ax. f (Ay. x x y));

Like omega, the fix combinator has an intricate, repetitive structure; it is
difficult to understand just by reading its definition. Probably the best way
of getting some intuition about its behavior is to watch how it works on a
specific example.f Suppose we want to write a recursive function definition

6. It is often caUed the ca/l-by-vaJue Yrcombinator, Plotkin (1975) called it Z.
7. Note that the simpler call-by-name fixed point combinator

y= M. (Ax. f (x x)) (Ax. f (x x))
is useless in a call-by-value setting, since the expression Y9 diverges, for any g.
g. It is also possible to derive the definition of f-i x from first principles (e.g., Friedman and
Feilelsen, 1996, Chapter 9), but such derivations are also fairly intricate.

66
5 The Untyped Lambda-Calculus

of the form h ~ (body containing h)-i.e., we want to write a definition where
the term on the right-hand side of the ~ uses the very function that we are
defining,as in the definition of factorial on page 52. The intention is that
the recursive definition should be "unrolled" at the point where it occurs; for
example, the definition of factori a1 would intuitively be

if n=Othen 1
else n * (if n-l=O then 1

else (n-l) * (if (n-2)=0 then 1
else (n-2)))

or, in terms of Church numerals:

if realeq n Co then Cl

else times n (if realeq (prd n) Co then (1

else times (prd n)
(if realeq (prd (prd n)) Co then c\
else times (prd (prd n)) ...))

Ibis effect can be achieved using the fi x combinator by first defining 9 =
Af . (body containing f) and then h = fi x g. For example, we can define the
factorial function by

9 = Afct. An. if realeq n Co then c\ else (times n (fct (prd n)));factorial = fix g;

Figure 5-2 shows what happens to the term factori a1 C3 during evaluation.
The key fact that makes this calculation work is that fct n _. 9 fct n. That
is, fct is a kind of "self-replicator" that, when applied to an argument, sup-
plies itse/rand n as arguments to g. Wherever the first argument to 9 appears
in the body of g, we will get another copy of fct, which, when applied to
an argument, will agaln pass itself and that argument to g, etc. Each time we
make a recursive call using fct, we unroli one more copy of the body of 9
and equip it with new copies of fct that are ready to do the unrolling agaln.

5.2.9 ExERCISE[*-]: Why did we use a primitive if in the definition of g, instead of
the Church-boolean test function on Church booleans? Showhow to define
the factori a1 function in terms of test rather than if. 0

5.2.10 ExERCISE[* *]: Definea function churchnat that converts a primitive natural
number into the corresponding Church numeral. 0

5.2.11 EXERCISE[RECOMMENDED,**]: Use fi x and the encoding of lists from Exer-
cise 5.2.8 to write a function that sums lists of Church numerals. 0

5.2 Programming in the Lambda-Calculus 67

factorial C3

fix 9 C3
h h C3

where h = Ax. 9 (i1y. x x y)
9 fct C3

where fct = i1y. h h y
(An , if realeq n Co

then Cj

else times n (fct (prd n)))
C3

if realeq C3 Co

then Cj

else times C3 (fct (prd C3))
--' times C3 (fct (prd C3))
--' times C3 (fct c;)

where c; is behaviorally equivalent to c,
--' times C3 (9 fct c;)
--' times C3 (times c; (9 fct c;)).

where c; is behaviorally equivalent to ci
(by repeating the same calculation for 9 fct c2)

--' times C3 (times c; (times c; (9 fct c~))).
where c~ is behaviorally equivalent to Co

(similarly)
--~ times C3 (times c2 (times c~ (if realeq Co Co then Cl

else ...)))
--~ times c3 (times c2 (times c~ Cl))
--~ c6

where cG is behaviorally equivalent to C6·

Figure 5-2: Evaluation of facto ri a1 C3

Representation

Before leaving our examples behind and proceeding to the formal definition
of the lambda-calcuius, we should pause for one final question: What, exactly,
does it mean to say that the Church numerals represent ordinary numbers?

To answer, we first need to remind ourselves of what the ordinary numbers
are. There are many (equivalent) ways to define them; the one we have chosen
here (in Figure 3-2) is to give:

• a constant 0,

68
5 The Untyped Lambda-Calculus

• an operation i sze ro mapping numbers to booleans, and

• two operations, suee and pred, mapping numbers to numbers.

The behavior of the arithmetic operations is defined by the evaluation rules
in Figure 3-2. These rules tell us, for example, that 3 is the successor of 2,
and that i szero ° is true.
The Church encoding of numbers represents each of these elements as a

lambda-term (i.e., a function):

• The term Corepresents the number 0.

As we saw on page 64, there are also "non-canonical representations" of
numbers as terms. For example, AS. AZ. (AX. x) z, which is behaviorally
equivalent to co, also represents 0.

• The terms sec and prd represent the arithmetic operations suce and
pred, in the sense that, if t is a representation of the number n, then
scc t evaluates to a representation of n + 1 and prd t evaluates to a rep-
resentation of n - 1 (or of 0, if n is 0).

• The term i szro represents the operation iszero, in the sense that, if t is
a representation of 0, then i szro t evaluates to true, 9 and if t represents
any number other than 0, tben iszro t evaluates to false.

Putting all this together, suppose we bave a whole program tbat does some
complicated calculation witb numbers to yield a boolean result. If we replace
all the numbers and arithmetic operations with lambda-terms representing
them and evaluate the program, we will get the same result. Tbus, in terms
of their effects on tbe overall results of programs, there is no observable dif-
ference between tbe real numbers and their Cburch-numeral representation.

5.3 Formalities

For the rest of the cbapter, we consider tbe syntax and operational semantics
of the lambda-calculus in more detail. Most of the structure we need is closely
analogous to what we saw in Chapter 3 (to avoid repeating that structure
verbatim, we address here just the pure lambda-calculus, unadorned with
booleans or numbers). However, the operation of substituting a term for a
variable involves some surprising subtleties.

9. Strictly speaking, as we defined it, ; szr-o t evaluates to a representation of true as another
term, but let's elide that dlsttncnon to simplify tile present discussion. An analogous story can
be given to explain in what sense the Church booleans represent the real ones.

